Dynamic Privacy For Distributed Machine Learning Over Network

نویسندگان

  • Tao Zhang
  • Quanyan Zhu
چکیده

Privacy-preserving distributed machine learning becomes increasingly important due to the recent rapid growth of data. This paper focuses on a class of regularized empirical risk minimization (ERM) machine learning problems, and develops two methods to provide differential privacy to distributed learning algorithms over a network. We first decentralize the learning algorithm using the alternating direction method of multipliers (ADMM), and propose the methods of dual variable perturbation and primal variable perturbation to provide dynamic and networked differential privacy. The two mechanisms lead to algorithms that can provide privacy guarantees under mild conditions of the convexity and differentiability of the loss function and the regularizer. We study the accuracy and the convergence properties of the algorithms, and show that the dual variable perturbation outperforms its primal counterpart. To design an optimal privacy mechanisms, we analyze the fundamental tradeoff between privacy and accuracy, and provide guidelines to choose privacy parameters. Numerical experiments using customer information database are performed to corroborate the results on privacy and utility tradeoffs and design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

PriMaL: A Privacy-Preserving Machine Learning Method for Event Detection in Distributed Sensor Networks

This paper introduces PriMaL, a general PRIvacy-preserving MAchine-Learning method for reducing the privacy cost of information transmitted through a network. Distributed sensor networks are often used for automated classification and detection of abnormal events in high-stakes situations, e.g. fire in buildings, earthquakes, or crowd disasters. Such networks might transmit privacy-sensitive in...

متن کامل

Distributed learning algorithm for feedforward neural networks

With the appearance of huge data sets new challenges have risen regarding the scalability and efficiency of Machine Learning algorithms, and both distributed computing and randomized algorithms have become effective ways to handle them. Taking advantage of these two approaches, a distributed learning algorithm for two-layer neural networks is proposed. Results demonstrate a similar accuracy whe...

متن کامل

Knowledge Is at the Edge! How to Search in Distributed Machine Learning Models

With the advent of the Internet of Things and Industry 4.0 an enormous amount of data is produced at the edge of the network. Due to a lack of computing power, this data is currently send to the cloud where centralized machine learning models are trained to derive higher level knowledge. With the recent development of specialized machine learning hardware for mobile devices, a new era of distri...

متن کامل

Private Learning on Networks

Continual data collection and widespread deployment of machine learning algorithms, particularly the distributed variants, have raised new privacy challenges. In a distributed machine learning scenario, the dataset is stored among several machines and they solve a distributed optimization problem to collectively learn the underlying model. We present a secure multiparty computation inspired pri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1601.03466  شماره 

صفحات  -

تاریخ انتشار 2016